今回はホントにホント。教え子たちのセリフに刺激されて書いた講座です。内容は、有名な算数の先生が発案された時計算の解法なのですが、なるほどなかなか素晴らしい解法であります。
教え子のナマスケ
「先生のホームページってシャドーの説明がないよね。先生知らないんでしょ?」
困った顔の私を見てすかさずもう一人。
教え子のマセオ
「なんだ先生、知らないのかぁ。算数の先生がシャドー知らなきゃダメじゃん?」
まったく小学生という人種は言葉を選びません。ボキャブラリーが少ないということもあるでしょうが、表現が剛速球のストレート!まあ、彼らに悪意はないんですけどね。これは大勢の小学生たちと接して、身をもって感じてきたことでありますが、
でも 言いたいことを隠して黙っている大人よりは、ずっと好きです。
シャドー。
これは「中学への算数」という東京出版発行の雑誌から生まれた算数用語。時計算の解法テクニックの名称で、同誌中心ライター、栗田先生のご発案だったと思います。
もちろんだいぶ前から何度も読んで知っていました。ですが、ご発案者がハッキリしていましたし、この講座では今まで掲載を遠慮してました。
…という、取り上げなかった理由がきちんとあるわけですが、ナマスケたちのセリフを黙認するのも悔しいから、今回の講座で1問だけ紹介してみようと思います。
※「中学への算数」は、塾の算数教師のバイブルと呼ばれるほど、充実した内容の素晴らしい雑誌です。まだ読んだことのない生徒さんやご父兄は、ぜひ一度お読みになることをお勧めします。
シャドーが使える問題例
いま、時計が4時を指しています。
文字盤の「3」の位置が、長針と短針のちょうど真ん中になるのは4時何分ですか?
|

上の図は4時ジャストの時計のようすです。
ここから何分か経過したときに、長針と短針のちょうどまん中にブルーで示した「3」のラインが入るということです。
必ずしもシャドーを使わなくても解くことはできますが、確かにシャドーを使うと、とても速く解けるのは間違いないです。
その考え方は……。

つねに長針と短針の中央を動く架空の針(シャドー針・赤色)を想定します。そしてそのシャドー針が「3」を示すラインに重なるときが解答になると考えるのです。
時計の長針は分速6° 短針は分速0.5°だから、シャドー針はそれらの平均的なスピード
つまり(6+0.5)÷2=分速3.25°です。
シャドー針と「3」ラインの4時ジャストでの隔(へだ)たりは30°
(理由→4時ジャストは長針と短針の角度が120°だから 90−120÷2=30°)
したがって、シャドー針が「3」ラインに重なるまでの時間は、
30°÷3.25°=30÷13/4=120/13=9と3/13(分)
求める時刻は4時9と3/13分です。
***
以上教え子に誘発されてシャドー針の解説でした。
便利だなぁと思った人は、使えるときにどんどん使ってくださいね。
え? シャドーの意味?
英語でshadowは陰(かげ)という意味なので、〈忍者のように姿が見えない架空の針〉という意味だと思います。たしかそんな感じの説明を読んだ覚えがありますね。
では今回の講座はこれで終わります。
テストの問題はシャドーも使えますが、別にこだわる必要はありません。他の解き方をしてくれてもかまいませんよ。
それではまた次回の講座でお会いいたしましょう!
Special Thanks! 中学への算数 東京出版のホームページはこちら
|